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1 Week 1: 14 Jan - 18 Jan

1.1 Introduction to John Sutton’s Lectures

• Last term we studied perfect competition type models that relied on three assumptions:
Large number of firms, Homogeneous product, and Full Information. Having these 3
assumptions allowed us to treat each firm as a price taker. We can then characterise
equilibrium via supply=demand which is the heart of “Walrasian Equilibrium.” This
term we will move beyond the competitive equilibrium and relax the assumptions one
by one. This will lead directly to the notion of a Nash Equilibrium.

• This Term’s Agenda.

– 1) Suppose a small number of firms: monopoly and oligopoly.

– 2) Suppose heterogeneous products.

– 3) Suppose there is incomplete information in the market for either the consumers
or producers.

– 4) General Equilibrium, Trade and Welfare under perfect information and under
imperfect information.

1.2 Part I: The Monopoly Model

• Review of elementary ideas. The Monopolist’s problem is to maximize profit such that,

π = pq − C(q) = R(q)− C(q).

Where R(q) = pq ≡ a revenue function. The optimal solution take several forms.

– Solution 1:
dπ

dq
=

dR

dq
− dC

dq
= 0.

MR = MC.

– Solution 2 (explicit):
dπ

dq
= p + q

dp

dq
− dC

dq
= 0.

Dividing out a p,
dπ

dq
= p(1 +

q

p

dp

dq
)− dC

dq
= 0.

Inverting,
dπ

dq
= p(1 +

1

p

q

dq

dp

)− dC

dq
= 0.
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Note that the elasticity of demand is defined as, η = −p

q

dq

dp
. Thus,

dπ

dq
= p(1− 1

η
)− dC

dq
= 0.

p(1− 1

η
) =

dC

dq
.

p(1− 1

η
) = MC.

• Some notes to mention about the second form of the solution:

– 1) Since η < ∞, p > MC (as in general, the demand curve is downward sloping).

– 2) The optimum always occurs at a point where η > 1. This is clear because

0 <
dC

dq
= p(1 − 1

η
). Hence the RHS of this expression must also be positive

which means η > 1.

– 3) Note that the divergence of price from MC is a measure of the so-called “Degree
of Monopoly Power.” Also, rewriting the FOC,

p−MC

p︸ ︷︷ ︸
Lerner Index

=
1

η
.

Lerner taught at the LSE in the past.

– 4) Note that in general, π > 0 at equilibrium and the profit can be interpreted
as a rent on the “property right” that confers in monopoly. This way of thinking
about monopoly profit will be useful in future analysis.

– 5) This model is consistent with increasing returns in the sense that MC may be
downward sloping. All that matters is that MR cuts MC from above. See graph.
[G-1.1]

1.3 A Simple Illustration of Price Discrimination

• Note that we are now refering to what is known as “3rd degree price discrimination.”

• A monoplist sells in a number of geographically separated markets between which
arbitrage is not feasible.

• Suppose we have 2 markets with demand schedules whose elasticities are η1 and η2

respectively.

• The profit maximization problem takes the form:

π = p1q1 + p2q2 − C(q).

Notice that there is only one cost function and q = q1 + q2.
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• Maximizing with respect to q1 and following the same steps as previously,

dπ

dq1

= p1 + q1
dp

dq1

− dC

dq
= 0.

dπ

dq1

= p1(1 +
q1

p1

dp

dq1

)− dC

dq
= 0.

dπ

dq1

= p1(1 +
1

p1

q1

dq1

dp1

)− dC

dq
= 0.

dπ

dq1

= p1(1−
1

η1

)− dC

dq
= 0.

MR1 = MC.

• Similarly, maximizing with respect to q2 and following the same steps are previously,

dπ

dq2

= p2 + q2
dp2

dq2

− dC

dq
= 0.

dπ

dq2

= p2(1 +
q2

p2

dp2

dq2

)− dC

dq
= 0.

dπ

dq2

= p2(1 +
1

p2

q2

dq2

dp2

)− dC

dq
= 0.

dπ

dq2

= p2(1−
1

η2

)− dC

dq
= 0.

MR2 = MC.

• Setting MR1 = MR2, we immediately get:

p1

p2

=
1− 1/η2

1− 1/η1

.

So suppose that η2 > η1. This means that the demand curve in the second market is
more elastic or flatter than in the first market. Thus the prices will be higher in market
1, the market with the more inelastic demand curve. A 10 percent increase in prices
in market 1 results in a less than 10 percent decrease in quantity demanded. This is
seen clearly from this equation as well.

• Graphically, as shown in the notes [G-1.2], we can easily determine the individual
market prices and quantities. Simply sum horizontally the MR curves of each of the two
markets and set

∑
MR = MC in the overall market. This determines the equilibrium

level of MR. Note, of course, MR1 = MR2 = MC. Once one determines the level of
MR, go back into the individual markets and equate the quantity produced with this
MR and then go up to the individual demand curves to find the prices.
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1.4 A Formal Treatment of Price Discrimination

• Reference: Schmalensee.

• Consider a market with N firms and let each firm have constant marginal cost equal
to c. The firm’s profit function is therefore,

π =
N∑

i=1

(pi − c)qi(pi) =
N∑

i=1

πi(pi)︸ ︷︷ ︸
Equation 1

.

• Assume that π(·) is smooth (all derivatives exist) and strictly concave. This implies
that we have a smooth decreasing MR schedule.

• Consider first the “No Discrimination” Regime. This yields FOC:

N∑
i=1

π′i(p
∗) =

N∑
i=1

[
(p∗ − c)q′i(p

∗) + qi(p
∗)
]

︸ ︷︷ ︸
Equation 2

,

with p∗ being the optimum price in all markets. Note we are now maximizing with
respect to price.

• Now consider the “Discrimination” Regime. This yields FOC:

π′(p∗i ) =
[
(p∗i − c)q′i(p

∗
i ) + qi(p

∗
i )
]
∀ i = 1 . . . N︸ ︷︷ ︸

Equation 3

,

with p∗i being the optimum price in market i.

• Before we go any further we need to define some preliminaries.

– 1) Label the market as follows:

∗ “Strong Market” if p∗i > p∗.

∗ “Weak Market” if p∗i < p∗.

– 2) Assume income effects are small.

– 3) Ignore distributional effects.

– 4) This justifies the use of the simple welfare indicator of profits plus consumer
surplus.

– Define the welfare indicator function as:

W =
N∑

i=1

{ CS︷ ︸︸ ︷∫ ∞

pi

qi(p)dp +

Profit︷ ︸︸ ︷
π(pi)

}
︸ ︷︷ ︸

Equation 4

.
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• We now construct an “artificial problem” as follows:

maxpi
π(p1, p2, . . . , pN),

subject to,
N∑

i=1

π′i(p
∗)(pi − p∗) ≤ t.

This may look a little strange at first but its construction will give us the power to
define discrimination just by varying the level of t. If t is large, the constraint will be
non-binding so we collapse to equation 3, the discrimination case. Why? Well the first
term in the constraint will surely not be equal to zero because if it was, there would
be no reason for discrimination. Charging everyone p∗ would be profit maximizing.
Thus the term that could be driven down to zero is the second term which represents
how much discrimination is being invoked. So if t is large, the non-discrimination
constraint is not-binding and we would expect that the solution to this problem would
be the solution to equation 3, under the discrimination regime. On the other hand, if
t is very small, close to zero, then the constraint is binding. Since the first term, as
we said, is clearly not zero, the second term must be driven to zero. Thus the market
prices approach the equilibrium price, p∗ which is charged in all markets. Thus the
solution would collapse to equation 2, under the non-discrimination regime.

• Define a solution to this problem as pi(t). The lagrangian is written as:

L =
N∑

i=1

π(pi)− λ

[
N∑

i=1

π′i(p
∗)(pi − p∗)− t

]
.

• This yields FOC:
π′i(pi(t)) = λπ′i(p

∗), for i = 1, . . . , N.

• Note that if the constraint is non-binding (t →∞), then λ = 0, so π′i(pi(t)) = 0.

• For large t, the constraint in the artificial problem is non-binding and the FOC coincides
to the FOC for equation 3. It corresponds to the solution, p∗i . Here λ = 0 and we can
write,

p∗i (t) = p∗i (∞) = p∗i .

• As t falls to zero, we move from the discrimination case to the non-discrimination case.
As t falls, λ rises. (In fact, if you compare the FOCs, when λ reaches 1, the FOC for
the discrimination case coincides with the FOC for the artificial problem).

• We now want to show that when the constraint binds (= 0), it is actually that prices
are converging and we just don’t have a lot of positive and negative terms canceling
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each other out. To do this, we can show that, in fact, all the terms in the constraint
are non-negative. Consider the constraint,

N∑
i=1

π′i(p
∗)(pi − p∗) ≤ t.

With reference to the graph in the notes [G-1.4], for both strong and weak markets,
it is clear that this expression is positive.

For Strong markets: π′i(p
∗)︸ ︷︷ ︸

Positive

(pi − p∗)︸ ︷︷ ︸
Positive

≥ 0.

For Weak markets: π′i(p
∗)︸ ︷︷ ︸

Negative

(pi − p∗)︸ ︷︷ ︸
Negative

≥ 0.

It follows then that as t → 0, all terms in the summation → 0. And since the first term
is not equal to zero, then the second term must go to zero. This means that pi → p∗.

• Next week we will examine the way output changes as t falls from ∞ to 0. The idea:
The welfare impact will involve 2 terms:

– 1) The first of which corresponds to transferring units of output from weak to
strong markets. This term is unambiguous in sign. Banning discrimination raises
welfare.

– 2) The second term relates to the fact that total output will change. This is not
necessarily welfare improving. We will soon characterize this term.
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2 Week 2: 21 Jan - 25 Jan

2.1 Summing up the Price Discrimination Model from last week

• The FOC for the artificial problem:

π′i(pi) = λπ′i(p
∗) ∀ i.

When λ = 0, this collapses to the FOC for the discrimination case:

π′i(p
∗) = 0.

When λ = 1, it coincides with the FOC for the non-discrimination case:

π′i(pi) = π′i(p
∗).

And since πi is concave, π′ is monotonic and so this implies that pi = p∗, ie, the solution
for the non-discrimination case.

• We would now like to analyze the effects of a change in t, our control variable, first on
output and the on welfare. We’re trying to get at the effects of discrimination in terms
of welfare.

• Take the FOC for the non-discrimination case and note that this implicitly defines p∗:

N∑
i=1

π′i(p
∗) =

N∑
i=1

[(p∗ − c)q′i(p
∗) + qi(p

∗)] = 0.

Refer back to last week’s notes to see where this comes from.

• Combine this with the FOC for the artificial problem:

π′i(pi) = λπ′i(p
∗) ∀ i.

Thus we get,

N∑
i=1

π′i(pi(t)) = 0.

• Now, take this final equation and differentiate with respect to t noting that πi is a
function of pi and pi is a function of t. Thus (*),

d

dt

[
N∑

i=1

π′i(pi(t)) = 0

]
≡

N∑
i=1

[π′′i ] · p′i(t) = 0.
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• To write this explicitly, take the equation for π(pi) and find the first and second deriva-
tives with respect to pi:

πi(pi) = (pi − c)qi(pi).

π′i(pi) = (pi − c)q′i(pi) + qi(pi).

π′′i (pi) = (pi − c)q′′i (pi) + q′i(pi) + q′i(pi) = (pi − c)q′′i (pi) + 2q′i(pi).

• Thus substituting this into the equation above (*):

N∑
i=1

[(pi − c)q′′i (pi) + 2q′i(pi)] · p′i(t) = 0.

Call this equation, (**).

• Now we will use this equation to compute the OUTPUT effect:

– Define total output as Q =
∑N

i=1 qi(pi) where pi = pi(t). Therefore,

dQ

dt
=

N∑
i=1

dqi

dpi

dpi

dt
=

N∑
i=1

q′ip
′
i.

And substituting this from the equation (**),

N∑
i=1

[(pi − c)q′′i (pi) + 2q′i(pi)] · p′i(t) = 0.

N∑
i=1

(pi − c)q′′i p
′
i + 2q′ip

′
i = 0.

N∑
i=1

(pi − c)q′′i p
′
i + 2

N∑
i=1

q′ip
′
i = 0.

2
N∑

i=1

q′ip
′
i = −

N∑
i=1

(pi − c)q′′i p
′
i.

N∑
i=1

q′ip
′
i = −1

2

N∑
i=1

(pi − c)q′′i p
′
i.

Thus,

dQ

dt
= −1

2

N∑
i=1

(pi − c)q′′i p
′
i.
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– Note that in this expression, we have q′′i (pi) which is the second derivative of the
market demand schedule. Thus if the demand schedule is linear, then the output
effect is zero.

• Now consider the WELFARE effect:

– We measure welfare with the following expression, (from last week) :

W =
N∑

i=1

{ CS︷ ︸︸ ︷∫ ∞

pi

qi(p)dp +

Profit︷ ︸︸ ︷
π(pi)

}
︸ ︷︷ ︸

Equation 4

.

– Now to determine how welfare changes with changes in t, take the differential:

d

dt
W =

d

dpi

{·}dpi

dt
.

– Note that
d

dpi

∫∞
pi

qi(p)dp = −qi(pi). Also note that π′i = (pi − c)q′i(pi) + qi(pi).

d

dt
W =

N∑
i=1

[−qi + (pi − c)q′i + qi]p
′
i =

N∑
i=1

(pi − c)q′ip
′
i.

– To better understand the effects on welfare, break the equation into two parts,

d

dt
W =

N∑
i=1

(p∗ − c)q′ip
′
i +

N∑
i=1

(pi − p∗)q′ip
′
i.

d

dt
W = (p∗ − c)

N∑
i=1

q′ip
′
i +

N∑
i=1

(pi − p∗)q′ip
′
i.

d

dt
W = (p∗ − c)

dQ

dt︸ ︷︷ ︸
Postive

+
N∑

i=1

(pi − p∗) q′i︸︷︷︸
Negative

p′i.

We have shown previously that the other two terms depend on if the markets are
strong or weak:
If Strong:

d

dt
W = (p∗ − c)

dQ

dt︸ ︷︷ ︸
+

+

−︷ ︸︸ ︷
N∑

i=1

(pi − p∗)︸ ︷︷ ︸
+

q′i︸︷︷︸
−

p′i︸︷︷︸
+

.
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If Weak:

d

dt
W = (p∗ − c)

dQ

dt︸ ︷︷ ︸
+

+

−︷ ︸︸ ︷
N∑

i=1

(pi − p∗)︸ ︷︷ ︸
−

q′i︸︷︷︸
−

p′i︸︷︷︸
−

.

– Summing up: reducing t to zero is equivalent to banning discrimination. The
second term represents the fact that (if the output effect is zero), then welfare is
raised by banning discrimination.

– Refer to the illustration in the notes [G-2.1] that shows the welfare loss in strong
markets and the welfare gain in weak markets, from allowing discrimination. The
change in welfare can be decomposed into the output effect and the deadweight
loss.

2.2 Game Theory Background

• Game Theory: 3 objects. 1) Players 2) Strategies for each player 3) Payoff function
which maps the set of strategies of all agents into agents i’s payoff.

• Nash Equilibrium (NE): A set of strategies, one for each player, such that, given
the strategies of its rivals, each player is using a strategy that maximizes his payoff
(Optimal Reply or OR)

• In an example of firm price competition: The price the firm charges is NOT the strategy.
The price the firm sets is the firm’s action. A strategy, in this case, would be more of
a “pricing plan” or a system of relative prices.

• The essence of non-cooperative game theory is that there are no binding agreements.

• Some games have no pure strategy NE. Hence the necessity for mixed strategies where
players have probabilities of playing individual strategies.

• There may also be several optimal replies for a player in pure or mixed strategies.

• We call coordination games, games in which two NE might have the same payoffs and
it is just a matter of making sure all players choose the same strategy.

• Then there are prisoner’s dilemma type games which the NE is not pareto efficient.

2.3 Two Classic Examples

2.3.1 Cournot Equilibrium

• Start with a monopoly and add frims to model competition.

• Let N firms sell a homogeneous product, produced at zero cost.
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• All firms face a simple market demand schedule:

p = a− bQ = a− b
N∑

j=1

qj.

• The profit of firm i:

πi = (a− b

N∑
j=1

qj)qi.

Note that prices are determined by market quantity, here indexed by j, and profits are
then: this price multiplied by the individual firm’s quantity, here indexed by i.

• Let each firm chooses output, qi, taking rivals output levels as given. We seek a NE
in quantities, qi. Thus maximize profits with respect to qi noting that qi is one of the
elements in the summation of the qj’s.

∂πi

∂qi

= a− b
N∑

j=1

qj − bqi.

• Let us examine the case of a symmetric NE in which all firms choose the same output
at equilibrium. Denote total output as Q = Nq =

∑N
j=1 qj. So we have:

a− b
N∑

j=1

qj − bqi = a− bNq − bq = a− bq(N + 1) = 0.

a− bq(N + 1) = 0 ⇒ q =
a

b(N + 1)
.

And the demand schedule:

p = a− b

N∑
j=1

qj = a− bNq.

Substituting in for q,

p = a− bN [
a

b(N + 1)
].

p = a− [
aN

(N + 1)
].

p =
a(N + 1)− aN

(N + 1)
=

a

(N + 1)
.
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• So in the case where this is only 1 firm (N = 1), the monopoly case, p =
1

2
, or the

familiar MR = MC result that gives us a price half way up the demand schedule.

• As n −→∞, p −→ 0 = MC in this case.

• As more and more firms enter the market, prices fall to MC. When there are many
firms in a market, each firm has a small share of the market so when the price falls,
the quantity increase in demand per firm is large. Thus the incentive for prices to fall
when there are many firms in an industry. Bertrand had other ideas.

2.3.2 Bertrand Equilibrium

• Consider an industry with N firms producing a homogeneous product. We seek a NE
in prices known as a Bertrand Equilibrium. The strategy for firm i is Pi.

• The payoff functions for 2 firms look as follows:
if P1 < P2 π1 = P1Q(P1)
if P1 > P2 π1 = 0

if P1 = P2 π1 =
1

2
P1Q(P1)

(1)

[G-2.3]

• Note that the payoff function is discontinuous so we use a graphical representation to
look for NE. The only NE is when P1 = P2 = 0 = MC. Otherwise one firm or the
other has an incentive to either undercut to steal the market, or if one firm is charging
a zero price and the other is charging some positive price, then the zero price firm has
the incentive to raise his price up to just below the price of his rival. The firm charging
the positive price is indifferent because he is making zero profit either way. Once the
other guy’s price is above zero however, he then has an incentive to undercut which
takes us back down to the stable equilibrium at (0, 0).

• The Bertrand example is really not a good example of actual firm behavior because it
does not take into account reactions. If one firm undercuts on one day and the other
will undercut the following day, then this knowledge might cause the first firm NOT
to undercut in the first place. This however, changes the dynamics of the game.

• Final remark: So far, all our examples are ones in which each firm chooses some single
strategy from its strategy set. Consider a game that has no equilibrium in what we
call “Pure Strategies.” ie, a firm cannot just choose one pure strategy all the time and
expect it to always be his optimal reply. Thus the need to introduce mixed strategies.
Players play strategies with probabilities: the set of strategies is called the support.
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3 Week 3: 28 Jan - 1 Feb

3.1 Mixed Strategy Equilibrium

• Consider the setup with the ship and sub deciding to go north or south around an
island with payoffs of (+1,−1) or (−1, +1) depending on if they meet or not.

• Let p equal the probability that the sub goes north. If the ship goes north, its expected
payoff is:

E[π] = p(−1) + (1− p)(+1) = 1− 2p.

• If the ships goes south, its expected payoff is:

E[π] = p(+1) + (1− p)(−1) = 2p− 1.

• If both appear in the support of the stragegy, then,

1− 2p = 2p− 1 =⇒ p =
1

2
.

• We could do a similar calculation for the sub; if the ship goes north with probability

q =
1

2
, then the sub is indifferent between going north and south. Thus we have a NE

in mixed strategies where p = q =
1

2
.

3.2 Examples of Nash Equilibrium

3.2.1 Auctions

• The design of auctions is crucial and the application of game theory to auctions has
been very successful. Consider the auctioning off of Oil tracts in the sea.

• A tract is defined as some geographical area in the water where there might be an
adjacent tract that is already producing oil. Since it is very possible that the oil
reserves below the sea are connected, the current owner of the adjacent oil tract will
have superior information about the tract that is up for auction. Suppose there is one
insider in the adjacent tract that knows exactly the value of the tract that is up for
sale. The other bidders, the outsiders, do not know the true value of the tract.

• If the outsider bids too high, above the true value, then he might get an unprofitable
tract. However, though it might seem that just not bidding is an optimal strategy for
the outsider, it turns out that it is not. Consider if only the insider bids on the new
tract. He will of course bid very low knowing that he will automatically win. But
the outsiders would have a dominate strategy of bidding just above the insider and
winning the tract. Thus, in a NE, the outsiders MUST bid.
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• Consider an example of 2 bidders: an informed bidder and an uninformed bidder.
The true value of tract to the bidder is denoted v where v is drawn from a uniform
distribution on [0, 1]. Since both players would get the same value out of the tract,
this type of auction is called a “common value auction.”

• Assume that the informed bidder knows the exact value of v. The uninformed bidder
only knows that v ∼ U [0, 1].

• We seek a Nash Equilibrium in bidding strategies.

• A strategy for the uninformed player is a bid, b. A mixed strategy specifices a proba-
bility distribution from which b is drawn.

• A strategy for the informed player takes the form of a function which maps the true
value, v, into a bid s(v). Payoff is the true value minus the bid, v−“bid.”

• Since the derivation is rather complicated, we will now state the result and show it is
Nash. The following strategies form a NE in mixed strategies:

– The informed player bids s(v) =
1

2
v.

– The uninformed player bids b, where b is drawn from a uniform distribution on[
0,

1

2

]
.

• Proof that this combination of strategies is Nash:

– Uninformed player’s strategy. Here we show any bid in
[
0,

1

2

]
yields expected

payoff of zero.

– To show that the uninformed strategy is Nash, assume that the informed player

bids
1

2
v. Therefore, whatever the uninformed player bids, he will win if:

b >
1

2
v.

Or,
v < 2b.

– So consider the graph in the notes of the distribution of v on the uniform distri-
bution [0, 1]. If v > 2b, then the informed player wins the auction and the payoff
to the uninformed player is zero. If v < 2b, the uninformed player wins. So for
0 < v < b, the payoff v − b < 0. For b < v < 2b, v − b > 0. Noting that these
two areas are equal because the distribution is uniform [G-3.1], then the expect
payoff is 0. So overall, the expected payoff for the uninformed player is zero.

– Informed player’s strategy. Given the strategy of the uniformed player, (bidding

b ∈ U
[
0,

1

2

]
), the expected payoff from an informed player bid of s is:

15



∗ Win with probability 1 if s >
1

2
. Clearly b is never greater than

1

2
, so the

informed player will always win.

∗ Win with probability 2s if 0 ≤ s ≤ 1

2
. This is because the uniformed player’s

bid is drawn from a uniform distibution on
[
0,

1

2

]
. Given a bid, s, by the

informed player in that range, the probability that s > b, is the probability
that b ∈ (0, s). Because the distribution is uniform this probability equals 2s.
[G-3.2]

– Hence the expected payoff is:

E[π] = 2s(s− v) = 2s2 − 2sv.

– To determine the optimal bid, take the FOC:

d

ds
E[π] = 4s− 2v.

Setting equal to zero,

4s− 2v = 0 =⇒ 4s = 2v =⇒ s =
1

2
v.

– We have confirmed that it is optimal, given the bidding strategy of the uninformed
player, for the informed player to bid one half the true valuation.

• Two extensions of this model:

– Many uninformed bidders: same outcome as above but the calculation focuses on
the maximum bid from any uninformed bidder.

– v is distributed on [−x, 1], or some tracts are unprofitable. Here the informed
player makes no bid if v < 0, so the uninformed player always “wins.” (though
of course, he still loses). However, the expected payoff to the uninformed players
remain zero as before.

• Evidence: Hendricks and Porter Article. They studied the data to test predictions.
Their predictions were as follows:

– π̄ of the informed player greater than zero.

– π̄ of the uninformed player equal to zero, as we showed above in the NE.

– Profitability of the tracts, considering that an informed player will never place a
bid if v < 0:

E[π = v − b| Uninformed Player Wins and Informed Player Does Not Bid] < 0.

E[π = v − b| Uninformed Player Wins and Informed Player Does Bid] > 0.

E[π = v − b| Uninformed Player Wins] = 0.
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• After running regressions on the data to determine if their predictions held up they
found:

Informed Player Wins Uninformed Player Wins
π = v − b 6.76 −0.42

Standard Error 3.02 1.76
Uninformed Wins and Informed does not Bid

π = v − b −2.69
Standard Error 0.86

Uninformed Wins and Informed does Bid
π = v − b 0.78

Standard Error 2.64

3.2.2 A Second Application: Repeated Games of Price Competition

• The repeated game or supergame framework is as follows: Let G denote the initial
constituent stage game.

• We distinguish between finite and infinite horizon games denoted GT and G∞ respec-
tively.

• The payoff function from GT is given as the sum of the payoffs in G. The payoff of G∞

is given by the NPV of the discounted flow of payoffs:

∞∑
t=0

δtπt δ ∈ [0, 1].

• A strategy in GT or G∞ is a rule that specifies an action or strategy in G at time t as
a function of the history of play from time 0 to time t− 1. ie, the actions taken by all
players prior to time t.

• Note that one equilibrium would be to ignore history: In GT or G∞, an equilibrium
can be constructed by taking any NE of the constituent game and having each player
play the constituent game strategy in every period.

• Example: Let G be the simple Bertrand model and consider G∞.

– Recall that the only NE of G is the one were each firm sets P = MC so π = 0.
We know from above that having each firm playing this strategy in every period
constitutes a NE of G∞.

– Result: We can support any positive level of profits (such as monopoly profits)
for a sufficent discount factor.

– We need to build a rule into the game of pricing strategies when one firm deviates.
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– In the first period set P = PM , the monopoly price. In subsequent periods,

∗ If rival’s price in all previous periods has been at least PM , set Pt = PM .

∗ If at any period in the past, the rival’s price has been below PM , set Pt = MC.

– We aim to show that this is a NE. Consider a situation where we have n firms
and each share the monopoly profit equally if all set the monopoly price.

– FOLK THEOREM: Along the equilbrium path of the game, the payoff (NPV of
profit flows), is:

Π =
1

n
πM + δ

1

n
πM + δ2 1

n
πM + . . . .

Π =
1

n

1

1− δ
πM .

Now consider the profit stream from a deviant firm who (WLOG) deviates at time
t = 0. The expected payoff for the deviant is:

Π′ ≤ πM + 0 + 0 + . . . .

Thus, to make sure that deviation does NOT occur, it must be that Π > Π′.
Thus,

1

n

1

1− δ
πM > πM .

1

n

1

1− δ
> 1.

1

1− δ
> n.

1

n
> 1− δ.

1− 1

n
< δ.

So as long as δ is greater than 1− 1

n
, we maintain cooperation. This is intuitive

because to avoid deviation now, we have to make sure that the expected prof-
its in the future carry sufficiently high weight to dissuade a deviant firm from
undercutting.

– Note on nomenclature: A trigger strategy specifies two actions and a rule for
switching between the two. A grim trigger like we have here allows for no second
chances.

– Note also that as n −→ ∞, δ −→ 1, so deviation is more profitable and δ must
be very high to maintain cooperation.
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3.3 Beyond Nash Equilibrium

• Consider the possible set of strategy combinations and we now have developed a subset
of this set called Nash Equilibrium. However, as is often a problem with NE, there are
usually many of them. So, we seek a subset of Nash Equilibrium by introducing new
restrictions and narrowing the number of possible equilibria.

• Consider a simple prisoners dilemma with strategies L1 and M1 for player 1 and L2 and
M2 for player 2. The pareto efficient outcome is (10, 10) from both players cooperating
and playing L. The NE is both players playing M and receiving (3, 3). The dilemma
is held up by the off diagonal entries of (11, 0) and (0, 11). See game in notes. [G-3.3]

• Consider the finitely repeated game, GT , and notice the following argument: the only
NE of GT is where (M1, M2) is played in each period. [G-3.4]

• More on this next week ...
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4 Week 4: 4 Feb - 8 Feb

4.1 Subgame Perfect Nash Equilibrium

• Consider the game, G, as shown in the notes. [G-4.1] It is an extended prisoner’s
dilemma and the only NE in G is (M1, M2).

• We proceed to consider the game G2 in which G is played in two successive periods.
The payoff for G2 is the sum of the payoffs in G.

• Question: What are the outcomes that can be supported as a NE in the two-period
game? Clearly, one NE is formed by playing the NE in G in both periods. But can
we form another NE of G2 where the virtuous outcome, playing (L1, L2), is achieved
in the first period? The answer is YES. A pair of strategies that support this is as
follows: Player i plays Li in period 1, and then follows the rule in period 2:

Play in period 2:

{
Mi if (L1, L2) was played in period 1
Ri otherwise

(2)

• Playing the R strategy after the deviation is sort of a threat point that prevents anyone
from deviating in period 1.

• Proof: Note that along the equilibrium path of the game, the outcome is (L1, L2)
in period 1 and (M1, M2) in period 2 and each player gets payoff = 10 + 3 = 13. By
deviating, (to Mi), in period 1, the payoff to the deviant is 11+0 = 11. Thus deviation
is not profitable. QED.

• However, the NE we just created is NOT perfect.

• Define: (Subgame) Perfect Nash Equilibrium (SPNE). A set of strategies that form a
NE, and which induce a NE in every subgame of the game. In a game of complete
information the term “Subgame PNE” is equilivalent to “PNE.”

• In the game G2, we can find the SPNE by means of a backward induction. ie, first
consider the game G played at period 2. The only NE is (M1, M2), with payoffs equal
to (3, 3). Now analyze period 1. The payoff as of period 1, are those payoffs of G plus
the payoffs in period 2, (3, 3). Thus, the only equilibrium in G2 at period 1 is to play
(M1, M2). So (M1, M2) in period 1 and (M1, M2) in period 2 is the only SPNE.

4.1.1 An Example of SPNE

• Consider the extensive form of the game shown in the notes. We define graphically
nodes, subgames, terminal nodes, and the payoffs to the players.

• Now consider the extensive form game where player 1 plays first and plays L1 or R1.
[G-4.2] If he plays L1, the payoffs to players 1 and 2 are (0, 2) respectively. If player
1 plays R1, then player 2 gets to play either l2 or r2 with payoffs (−1,−1) or (1, 1)
respectively.
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• Note the definition of NE: A set of strategies such that, given the strategies of the
rival(s), each player is using an optimal reply (ie, there is no alternative strategy that
yields a strictly higher payoff).

• In the game just described, there are two NE: (R1, r2) and (L1, l2). It is clear that the
first NE is also SPNE which is easily shown using backward induction. But why is
(L1, l2) a NE? Given that 1 is playing L1, 2 gets a payoff of 2 whether he plays l2 or
r2. So player 2 is using an optimal reply. (There is no alternative strategy that yields
a strictly higher payoff). Given that 2 is playing l2, player 1 gets 0 if he plays L1 and
−1 if he plays R1. So playing L1 is optimal. Thus (L1, l2) is a NE but not perfect.

• Intuition: imposing the additional restriction of perfectness excludes empty threats (or
promises). Player 2 saying that he will play l2 if 1 plays R1 is an empty threat because
once 1 plays R1, player 2 will not want to play l2, because it is in his interest to play
r2.

• SPNE is a good restriction that we can apply to limit the number of NE. Other
restrictions that have been brought forward have not received as much positive support.

4.1.2 Technical footnotes

• Consider two games: In game G, player 2 knows which node he is at because he
observes player 1’s action. In game G′, the players make simultaneous moves. See
notes for extensive and normal forms.

• In game G, player 2 does not have only 2 strategies, but rather 4. His strategies take
the form of a function (mapping) of 1’s action into an action for player 2. We can write
2’s strategies in the form (XY ) where X is 2’s reply to L1 and Y is 2’s reply to R1.
So overall player 2 has the following 4 strategies: (l2, l2),(l2, r2),(r2, l2), and (r2, r2).

• To write the game G′ in extensive form, we must introduce the concept of information
sets. [G-4.3] An information set is a set of nodes such that the player taking an action
at these nodes, must take the same action at each node in the set. The intuition is
that the player cannot observe which node he is at. See the graph in the notes that
shows how we graphically represent an information set. The key idea is that player 2
must play either l2 at both nodes or r2 at both nodes. Player 2 cannot condition his
strategy.

• A subgame MUST NOT break information sets.

4.2 Non-cooperative Bargaining Theory

• Two players aim to divide a cake of size 1. We will consider simultaneous games first.

• Simultaneous Move Games.
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– Player 1 proposes to take a share of the cake equal to x. Player 2 proposes to
take a share of the cake equal to y. The payoffs are as follows:

Payoff:

{
(x, y) if x + y ≤ 1
(0, 0) if x + y > 1

(3)

– Result: An partition (x, y) where x + y = 1 can be supported as a NE. Proof:
Given a demand of x by player 1, player 2 receives y so long as y ≤ 1− x. Hence
y = 1− x is the optimal reply and similarly for player 1.

– This results captures the so-called “Indeterminacy of the bilateral monopoly.”

• A Sequential One-Period Game.

– Let player 1 make a proposal (x, y) with x + y ≤ 1 and player 2 replies yes or no.

– The payoffs are as follows:

Payoff:

{
(x, y) if yes
(0, 0) if no

(4)

– This is called the “Ultimatum Game.”

– Result 1: Any division (x, y) can be supported as a NE of this game. To see this,
note that 2’s strategy in this game takes the form of a function (mapping) from
a proposal by 1 into a yes/no response by player 2. To support (x, y) as a NE,
use appropriate strategies as follows: player 1 proposes (x, y) and the strategy of
player 2 is as follows:

Reply:

{
Accept if 2 gets at least y
Reject if 2 gets less than y

(5)

However, this clearly IS NOT subgame perfect.

– Result 2: There is a unique perfect NE in this game. To see this analyze the
subgame beginning with 2’s reply. A NE in this subgame requires 2 to make a
response that maximizes 2’s payoff. If 1 offers (x, y) with y > 0, then the only NE
in this subgame is one where 2 says yes. If 1 proposes (1, 0), then 2 is indifferent,
so both yes and no constitute an optimal reply.
But this implies that any (x, y) with y > 0 cannot be supported as a PNE because
1 can always do better by offering 1

2
y (and earn a strictly higher payoff).

So we have only one candidate equilibrium, (x, y) = (1, 0). This can be supported
as a PNE using the following strategies: Player 1 proposes (1, 0) and player 2
always says “yes.” Note that 2 is indifferent between “yes” and “no” given 1’s
offer.

• Sequential Multi-period game.
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– The structure of the game is displayed in the notes where at time t = 0, player 1
proposes (x, y). [G-4.4] If player 2 accepts, the payoffs are (x, y). If player 2 says
no, then in period t = 1, player 2 can propose a division (x, y). If player 1 accepts
the division is (x, y), but the payoffs are now (δx, δy). Then in period t = 2,
if we get agreement, payoffs are (δ2x, δ2y). This goes on and on so in general,
agreement at time = t yields payoffs (δtx, δty).

– Motivating idea: It might seem natural to analyze a finite horizon where the game
ends at time T . (Failure to say yes by time T implies payoffs (0, 0).) You can
show there is a unique SPNE and that this coincides with the SPE of the infinite
horizon game. In general, it is not true that the SPNE outcomes of an infinite
horizon game coincides with the limit points of the SPNE outcomes of the finite
games as T → ∞. See picture in notes that shows that the limit points of the
SPNE outcomes in a finite horizon are a subset of the SPE outcomes of the infinite
horizon games. [G-4.5]

– The key aim in the bargaining problem: is there a unique equilibrium? To prove
uniqueness in the infinite horizon game, we need to analyze it directly.

– A direct analysis can be constructed as follows: Note following a “No” in periods
0 and 1, we are left with a game that is identical in structure to the original game.
(Because then in period 2, player 1 gets to make the offer as he would do in period
0). We will use this to show (next week) there is a unique perfect equilibrium
outcome (via Rubenstein.)
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5 Week 5: 11 Feb - 15 Feb

5.1 Non-Cooperative Bargaining Theory

• We aim to examine an infinite horizon sequential bargaining game.

• The game: At time 0, player I makes a proposal and player II replies. If player II says
no, then the game will continue. At time 1, player II proposes and player I replies. If
player I says no, then at time 2, player I again makes a proposal and player II replies.
Etc.

• The discount factor of player i is δi, where 0 < δi < 1.

• To construct a perfect equilibrium, we usually start at the end and work backwards,
but clearly in an infinite horizon game, we must proceed differently. The key will be
that the game starting at time 0 has the same structure as the game starting at time
2.

• There may exist many equilibria, so we will look only at the extreme cases first. It will
turn out that the extreme cases are the same so we will get a unique equilibrium.

• Let M denote the supremum of the share which player I can obtain in any perfect
equilibrium of the game. (Note supremum is a number that cannot be exceeded.)

• Consider the following table:

Time Offer Made By I gets at MOST II gets at LEAST
0 I 1− δ2(1− δ1M)
1 II 1− δ1M
2 I M

The explanation of this table is as follows. Start in time 2, and consider that player I
gets M at most by definition. In period 1, player II gets to make an offer. He knows
he only has to offer player I at most M , but since I can get M tomorrow, effectively in
this period, player II only needs to offer player I, δ1M . This makes player I indifferent
between accepting δ1M in period 1 or waiting at getting M in period 2 (which will only
be worth δ1M by that time.) Thus, if player II offers δ1M to player I, then player II
himself gets 1 − δ1M . Now consider time 0. Player I makes the offer and he knows
that he needs to offer 1 − δ1M to player II, but again we must discount this value
by δ2 (player II’s discount value) because player I only needs to offer δ2(1− δ1M) to
player II because getting 1 − δ1M in period 0 will only be worth δ2(1 − δ1M) once
we get to period 1. If player II is offered δ2(1− δ1M) in period 0, then player I gets
1− δ2(1− δ1M) in period 0.
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• Now, since we know the structure of the game in period 0 is identical to the game
starting in period 2, the payoffs for player I must be the same. Thus,

1− δ2(1− δ1M) = M.

M − δ1δ2M = 1− δ2.

M(1− δ1δ2) = 1− δ2.

M =
1− δ2

1− δ1δ2

.

• We can now repeat this argument, beginning by defining M as the infimum of player
I’s share and relabling the table as “I gets at LEAST” and “II gets at MOST.” This
process of course yields exactly the same equation so the equation for M above is
unique.

• Thus M =
1− δ2

1− δ1δ2

defines a unique perfect equilibrium partition of the cake. (Ru-

binstein).

• Remarks on this solution. At equilibrium, player I gets
1− δ2

1− δ1δ2

. If we set δ1 = δ2 = δ,

then player I gets
1− δ

1− δ2
=

1− δ

(1− δ)(1 + δ)
=

1

1 + δ
. Thus player II gets 1 − 1

1 + δ
=

δ

1 + δ
. So we get an equilibrium allocation of:(

1

1 + δ
,

δ

1 + δ

)
.

Player I, who moves first, gets more than player II but as δ → 1, meaning that as the
players get infinitely patient, then the first mover advantage disappears and the shares
converge to (1

2
, 1

2
).

• Once we add more than 2 players, we lose uniqueness.

5.2 Part II: Product Differentiation

• Firms never face flat demand schedules, there is also some degree of heterogeneity in
products.

• Hotelling model (1929). Transport costs makes otherwise homogeneous goods to be
horizontally differentiated. See graph in notes. [G-5.1]

• Utility function of representative consumer: U = Constant −p − t · d, where p is the
price of the good, t is the per unit transport costs (or the degree of preference intensity
for slightly differentiated products), and d is the distance traveled.
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• Step 1: Given the locations of the firms, we want to analyze the price competition and
find the equilibrium profit of each firm. Step 2: The choice of locations by firms. We
set this up with a 2 stage game where in stage 1, firms choose a location and in stage
2, firms compete in prices.

5.2.1 A Preliminary Example - The Circular Road Model

• This type of model gets around the problem of firms on the “ends.” See graph in notes.
[G-5.2]

• Assume there are N firms located uniformly around the circular road of circumference
1. Thus the distance between any two firms is 1

N
. Assume also that firms only travel

around the edge of the circle.

• Let MC = 0 for all firms.

• We seek a NE in prices. In fact, we will seek a symmetric NE.

• Denote p̄ as the equilibrium price. Consider a deviant firm who sets a price, p.

• See graph in notes which shows Hotelling’s Umbrellas, but we have a situation where
the deviant’s umbrella looks slightly different than the neighboring umbrellas. [G-5.3]
Define the “Marginal Man” as the person who is located between the deviant firm and
one of the neighboring firms. Note this does not mean that he is right in the middle,
but rather falls just under the intersection of the two umbrellas. Define the distance
to the deviant as d. Thus, the distance to the neighboring firm is 1

N
− d.

• So we have the equation of the marginal man. (His utility gained from going to either
firms is the same).

p + t · d︸ ︷︷ ︸
Utility from Deviant Purchase

= p̄ + t(
1

N
− d)︸ ︷︷ ︸

Utility from Neighboring Purchase

.

Rearranging,

p + td = p̄ + t(
1

N
− d).

p− p̄− t

N
= −td− td.

2td = p̄− p +
t

N
.

• Define the density of consumers around the circular road as 1. Thus each firm’s sales
equals the length of the relavent line segment. So for the deviant firm, sales:

Sales = x = 2d.
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x =
p̄− p

t
+

1

N
.

• Profits. Recall that costs are zero. Thus,

π = px = p(
p̄− p

t
+

1

N
).

• Differentiating,

dπ

dp
=

p̄− p

t
+

1

N
− p

t
.

Now, for a symmetric NE, we aim to find a value p̄ such that when p = p̄, the above
derivative equals 0. So letting p = p̄ and setting equal to zero,

p̄− p

t
+

1

N
− p

t
= 0.

p̄− p̄

t
+

1

N
− p̄

t
= 0.

1

N
=

p̄

t
.

p̄ =
t

N
.

• Interpretation: as t → 0, p̄ → 0 = MC. We converge to the homogenous product
case and our model is actually the Bertrand model of price competition. For any fixed
t 6= 0, note that as N → ∞, p̄ → 0. Even though transport costs are not zero, each
firm must have closely similar neighbors.

• Finally we examine the demand schedule faced by the firm at equilibrium, ie, when

rivals set p̄ =
t

N
. See graphs in notes that display that as p goes to zero, the deviant

firms takes the entire market from its neighbors. [G-5.4]The edges of the umbrella
intersect exactly with the neighboring umbrellas. As the price of the deviant rises to
the point where it loses the whole market, this can also be shown via the umbrellas
because the deviant firms “coverage” collapses to zero as its neighbor’s umbrellas cover
the customers in the interval.

• If we have a situation where as the deviant firm lowers his price and takes over his
neighbor’s entire customer interval before his price reachs zero, then all of a sudden,
the deviant firm will have a discontinuous jump in product demand when he starts
taking over customers on the “other side” of his neighbor. See graph in notes for this
analysis. [G-5.5] The demand curve is therefore discontinuous in this case.
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5.2.2 The Choice of Location

• Some motivating examples. Assume there are no price decisions. We have a 1 shot
game.

• Each firm chooses a location on the line segment (0, 1). A firm’s payoff is given by
the length of the line segment consisting of points closer to the firm than to the other
firms.

• If 2 or more firms have the same location, they share equally the payoff associated with
that location.

• We aim to find a NE in locations, for a given number of firms, N.

• Let N = 2. Player I chooses x and player II chooses y. To find a NE, first consider
the case x 6= y. This is clearly not Nash because player I can gain a higher payoff by
moving towards y. So the NE involves x = y. Suppose x = y 6= 1

2
, then this is also

not Nash. Either firm can raise its payoff by moving slightly towards the long end of
the line. Thus the only NE is (x, y) = (1

2
, 1

2
). At this point, neither firm as a profitable

deviation.

• Now let N = 3. Here there is NO NE in pure strategies! Consider 3 firms organized
from left to right, x, y, and z. Consider the cases: If x 6= y 6= z. Not Nash because
x should move towards y. Suppose x 6= y = z or x = y 6= z. Again this is not Nash
because x can raise payoff by moving right towards y and z. Let x = y = z. Here all
profits are equal to 1

3
. Any firm can achieve a higher payoff by moving slightly towards

the Long end of the line (or if they’re in the middle, then moving in either direction is
profitable.)

• For N = 4 or above. The equilibrium configuration is of the form where two pairs firms
are positioned together somewhere on the line and the other firms are distributed
equally among the remaining line segment. For N = 4, the two pairs of firms are
positioned at 1

4
and 3

4
along the line. It is fairly easy to show that no deviation from

this configuration is profitable.

• For N = 5, two firms position themselves at 1
6
, one firm is at 1

2
, and the final two firms

are positioned at 5
6

along the line. Careful inspection verifies that these locations form
a NE.
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6 Week 6: 18 Feb - 22 Feb

6.1 The Modified Hotelling Model

• In the original 1929 Hotelling model, he modeled a two stage game where in stage 1,
firms choose a location and in stage 2, we seek a NE in prices.

• Using a linear transport cost, there is a small problem which Hotelling dismissed in
1929 as a technicality. The problem is with the linear umbrellas. If lowering one firm’s
price makes his umbrella intersect exactly with the opposite branch of his neighbor’s
umbrella, the demand for the product become discontinuous. See notes from week 5 for
picture of this. This problem occurs when firms are located closely together. Hotelling
concluded that in the two firm model along a circular road, firms choose to both position
themselves exactly at the center. This became known as the “Principal of Minimal
Differentiation.” However, consider this case if we have Bertrand price competition.
In this case, prices are equal to marginal cost and profits are zero. Therefore if either
firm moves a little towards the “ends,” his product becomes differientiated so he makes
positive profit. Thus, with this type of (severe) price competition Hotelling’s NE is
clearly NOT Nash.

• In 1979, 50 years after Hotelling’s paper, d’Aspremont, Gabszewicz, et. al, took up
this error and introduced a slightly different set up to show how we can get around
this error. The results of their analysis are radically different than Hotelling’s.

• We move now to a Quadratic Cost Function. (We could use a linear cost function and
look for a mixed strategy equilibrium, but the analysis gets very complicated). The
technical idea which will result is that this type of cost removes the discontinuity in
the demand function that is present with linear cost.

• We set up the model as follows: firms A and B choose locations along a line of length,
l. A chooses location a distance, a, from the left end of the line. B chooses location a
distance, b, from the right end of the line. Thus, the distance between the two firms is
l − a− b. See pictures in notes. [G-6.1]

• We write down a demand and profit schedule for each firm:

πi(p1, p2; a, b) for i = 1, 2.

We refer to his profit function as the payoff function for the stage 2 subgame where
the locations, (a, b), are taken as fixed. (thus they are written following the ;).

• Our recipe is as follows: Solve for p1 and p2. Then insert these prices into the profit
function and find the payoff functions for the stage 1 subgame as follows:

πi(a, b) for i = 1, 2.
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• Now consider the derivation of the demand schedule for the stage 2 subgame. See
graph in notes. [G-6.2] We denote the cost function as follows:

pi + cx2.

This results in parabolic umbrellas for each firm. Note that because the slope of the
umbrellas increases as you get farther away from the firm, you never get the case where
one firm’s umbrellas coincides exactly with a neighboring umbrella. There must exist
exactly ONE intersection. This gets around the discontinuity. See graph in notes.
[G-6.3]

• Define the following in terms of the Marginal Man (MM):

d1 ≡ The signed distance of the MM to the right of A.

d2 ≡ The signed distance of the MM to the left of B.

Thus, if the MM lies between firm A and B, then both d1 and d2 are positive. If the
intersection, say, occurs to the left of firm A, (so firm A has no market share), then d2

is positive, but d1 is negative.

• The equation of the marginal man is therefore:

p1 + cd2
1 = p2 + cd2

2.

Therefore the utility from consuming from A is exactly equal the utility from consuming
from B. Note the utility now involves a squared term of the distance from MM to each
firm. Solving:

p2 − p1 = cd2
1 − cd2

2 = c(d2
1 − d2

2) = c(d1 − d2)(d1 + d2).

Note again that l is the length of the line so a + b + d1 + d2 = l, or d1 + d2 = l− a− b.
Substituting,

p2 − p1 = c(d1 − d2)(l − a− b).

[Note that the fact that di is a signed distance, we can always make this substitution
no matter where MM lies.] Solving for d1 − d2,

d1 − d2 =
p2 − p1

c(l − a− b)
.

Consider again the equality,
d1 + d2 = l − a− b.

Adding together the previous two equations,
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d1 − d2 + (d1 + d2) =
p2 − p1

c(l − a− b)
+ l − a− b.

2d1 =
p2 − p1

c(l − a− b)
+ l − a− b.

Thus,

d1 =
p2 − p1

2c(l − a− b)
+

l − a− b

2
.

• Now the sales of firm A is equal to the customers to the left of A, a, plus the customers
to right of A, d1. [G-6.4] So,

q∗1 = a + d1 = a +
p2 − p1

2c(l − a− b)
+

l − a− b

2
.

This holds iff q1 ∈ (0, l]. If the above expression yields q1 < 0, then q∗1 = 0. If the
above expression yields q1 > l, then q∗1 = l.

• From this demand schedule, we compute profits:

πi(p1, p2; a, b) = piqi(p1, p2).

And these are the payoffs in the stage 2 subgame. We then solve for a NE in prices by
setting:

d

dpi

πi(p1, p2; a, b) = 0.

Call this solution (p∗1, p
∗
2). Substituting these prices back into the profit function, we

obtain the payoff function for the stage 1 subgame:

πi(a, b).

• The final step is using these profit functions as payoff functions for the location choice
game (ie the stage 1 game), we seek a NE in locations. The KEY RESULTS:

∂π1

∂a
< 0.

∂π2

∂b
< 0.

So what this says is if we decrease a for example, profits will rise. This involves moving
towards the end of the line. Thus the only NE is a = b = 0 or where firms are located
at opposite ends of the line. For lack of a better expression, this might be referred
to as the “Principal of Maximal Differentiation.” Note it is exactly opposite from the
Hotelling solution.
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• Beyond the d’Aspremont et. al. example. It seems that we have two competing ideas:

– 1.) Moving towards the other firm in the market shifts over the MM and raises
the market share and sales volume of the firm.

– 2.) Moving away from the other firm makes the two goods less (horizontally)
substitutable and increases prices and profits.

• In general, the NE in locations will reflect the interplay of these two ideas. The
formulation of the cost function and the degree of price competition are important in
determining where the NE will be. For example, less intense price competition (such
as Cournot instead of Bertrand), leads to CLOSER NE locations.

6.1.1 Entry Decisions

• So far we have taken the number of firms in an industry, n, as given. A further issue
is analyzing entry.

• Let firms incurr a setup cost for entry of ε > 0. Let the density of consumers on the
line enter as a parameter S, standing for the “Size of the market.”

• The parameter, S, enters multiplicatively in the profit function. A necessary condition
for entering is that:

Sπ(·) ≥ ε.

• A general feature of an equilibrium with entry: outcomes depend on the ratio
S

ε
. As

S

ε
rises, the density of firms on the line increases. (Either as the market size gets larger

or the entry cost falls). [Note, all this assume single product firms.] Also, as
S

ε
→∞,

then C1 (the concentration of the largest firm in the industry) → 0.

6.2 Vertical Product Differentiation

• Consider two firms, A and B, who sell at the same price, PA = PB = P . In horizontal
product differentiation (HPD), some consumers prefer A and some prefer B, but in
vertical price differentiation (VPD), all consumers choose the same product, namely
the higher quality item.

• Note that it is consumer’s “perceived” quality that matters. Thus it is consumer’s
willingness to pay that will determine A and B’s market shares.

• The model goes as follows: Assume a number of firms offer distinct, substitute goods
which vary in quality. (Note that if the goods were homogenous, this would just
collapse to a Bertrand game.)
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• Consumers buy one unit or none.

• Firms have zero cost. (VERY important assumption)

• Goods labeled k = 1...n and thus firm k sells product k at price pk.

• Consumer’s income levels are distributed uniformly over the interval t = [a, b].

• Consumer’s Utility level:
u(t, k) = uk(t− pk)

u(t, 0) = u0t.

Where t is the consumer’s income level and,

0 < u0 constant < u1 < · · · < uk < · · · < un.

[G-6.5]

• Obviously, the consumer’s income level is what determines his willingness to pay and
thus the demand for each good.

• u(t, 0) is what the consumer will get if he does not buy any of the n goods and spends
his income and some other bundle of goods. This bundle is referred to as the “Hicksian
Composite Commodity” and is defined by holding all relative prices of goods in other
markets constant.

• Consider the “Marginal Man.” He is just indifferent between buying good k and good
k−1 which is a bit less expensive but also of lower quality. Consider graph in notes that
shows that the price gap for the marginal man increases as his income rises. [G-6.6]
Thus the more wealthy people are more willing to pay more for quality. Thus,

uk(tk − pk) = uk−1(tk − pk−1).

Where tk is the marginal man’s income level. He is just indifferent between paying pk

for uk and paying pk−1 for uk−1.

• Solving the marginal man’s equation for tk,

uktk − uk−1tk = ukpk − uk−1pk−1.

tk(uk − uk−1) = ukpk − uk−1pk−1.

tk =
ukpk − uk−1pk−1

uk − uk−1

.

• Now define the Ck as:

Ck =
uk

uk − uk−1

.

This quantity will show up in the algebra below so it will simplify things. Note that
Ck > 1 because uk−1 < uk. Also, as the quality of these two goods get very close,
Ck →∞.
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• Thus we can simplify the above equation to,

tk = Ckpk + (1− Ck)pk−1.

• FOCs:
∂tk
∂pk

= Ck > 1.

∂tk
∂pk−1

= 1− Ck < 0.

• Now consider the highest quality good, good n. Let tn > a so that at least 2 goods
survive in the market. (We avoid a corner solution in this case). Note that the top
quality producing firm can always survive because he can always price the lowest and
gain the whole market. Define the profits of the top quality firm:

πn = Rn = pn(b− tn).

Because costs are zero, profits equal revenues. pn is the price charged and b− tn is the
fraction of the market that the top quality firm gets. Taking the derivative,

∂πn

∂pn

= b− tn − pn
∂tn
∂pn

.

Substituting in from above,

∂πn

∂pn

⇒ b− tn − pnCn = 0.

But also from above,
pnCn = tn − pn−1(1− Cn).

Substituting in,
b− tn − tn + pn−1(1− Cn) = 0.

b− 2tn + pn−1(1− Cn) = 0.

b− 2tn − pn−1(Cn − 1) = 0.

Since Cn − 1 > 0,
b− 2tn > 0.

Or,

tn <
1

2
b.

• So if a > 1
2
b, it cannot be that more than one firm survives. Here the lowest income

consumer (t = a), prefers to buy product un at price pn rather than buy the next
highest quality product, un−1, at price zero. Graphically, we get a corner solution
where there is no room for an additional firm to enter. [G-6.7] An interior solution
occurs more frequently when a is small so b − a is large and it is likely that a < 1

2
b.
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Thus the concentration of income becomes important because a more concentrated
income base will only allow one quality of good in the market, namely the highest
quality product. (See graphs). Note that the demand schedule for firm n depends on
the price charged by firm n− 1. As the price of firm n− 1 rises, the demand for firm
n’s product rises. (as is shown in the graphs).

• Now consider the same argument for a general good, k. Profits for firm k,

πk = Rk = pk(tk+1 − tk).

FOC:
∂πk

∂pk

= tk+1 − tk − pk
∂tk
∂pk

+ pk
∂tk+1

∂pk

.

Substituting in from above,

∂πk

∂pk

⇒ tk+1 − tk − pkCk + pk(1− Ck+1) = 0.

But also from above,
pkCk = tk − pk−1(1− Ck).

Substituting in,

tk+1 − 2tk − pk(Ck+1 − 1)− pk−1(Ck − 1) = 0.

Since Ck+1 − 1 > 0 and Ck − 1 > 0,

tk <
1

2
tk+1.

• It immediately follows therefore:

tn <
1

2
b, tn−1 <

1

4
b, tn−2 <

1

8
b, tn−3 <

1

16
b, . . .

• Thus, price competition between the high quality goods drive down their prices to a
level such that at equilibrium prices, even the poorest consumer prefers to buy the last
surviving good at its equilibrium price rather than the “best non-surviving” good at
p = MC = 0.

• Result: The Finiteness Property: There exists a bound, B, INDEPENDENT OF
QUALITY such that at most B firms can have positive sales revenues at a Nash
equilibrium in prices. Thus,

If a >
1

2
b, then B = 1.

If
1

2
b > a >

1

4
b, then B = 2.

If
1

4
b > a >

1

8
b, then B = 3.

...
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• In HPD, we had the situation where the more consumers that were in the market,
the more room there was for another firm to enter the market. In V PD, There is no
effect of more consumers in the market. This is an example of the non-convergence
principal.

• In conclusion: Entry of high quality firms induce exit of low quality firms. The presense
of firm’s of similiar quality causes both pi and pj to fall to zero. So as the qualities of
products in a market get close, the market share’s of firms remain concentrated but
prices go to zero.
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7 Week 7: 25 Feb - 1 Mar

7.1 Some final Remarks on Vertical Product Differentiation

• The Key element is the mapping from unit variable (marginal) cost labelled c, to the
quality level, u. ie, the mapping c(u). In the example we did last week, c(u) = 0 for
all u. Hence c(u) would be perfectly horizontal.

• In our model we had the maintained hypothesis that the marginal cost of production
(as function of output) was constant. Call this marginal cost c. The MC embodies
things like labor and raw materials.

• Now consider the case where the mapping c(u) is very steep. This means that it is
very costly (per unit of quality) for a firm to increase quality. Consider an industry
such that cost of increasing quality depends mostly on labor and materials, such as
building a high quality table.

• There is also the case where c(u) is flat which implies that the main burden on quality
improvement falls on fixed costs like R&D and the like. The marginal costs do not rise
as steeply in these types of industries.

• The steepness of this c(u) line is the key to the analysis. See the diagram in the notes
of the Hotelling setup (HPD) where all prices equal marginal cost. We get a simple 1:1
mapping between consumers and producers along the beach. The key, mathematically,
is that we can define an open set of consumers on the line and map it into an open set
on the producer line so that each consumer goes to exactly one unique producer.

• In the world of vertical product differentiation, qualities differ across products and
assume the price = c(u). If c(u) is steep, the same 1:1 mapping can be formed because
the open sets can be formed as in the hotelling case. This is because consumers have
to pay a significant amount more for a quality improvement. So, mathematically, we
can find an open interval of products, say, (u1, u2) and a corresponding open interval of
consumer income levels, (t1, t2), such that there exists a 1:1 mapping from consumers
into products. [G-7.1]

• If c(u) is perfectly flat, than all consumers will choose to buy the highest quality product
because the prices will all be the same. See diagrams in notes which show that for a
certain flattness level of c(u), even the consumer with the lowest income level, a, will
choose the highest quality product, ū. [G-7.2] Thus, the mapping becomes degenerate
and all consumer incomes levels in the open interval (t1, t2) are mapped directly into
a single point, ū.

• So, in a world with a steep c(u) mapping, there is room for a firm to enter in between
two firms and gain market share while if c(u) is flat, this breaks down. It can be
shown that this is a necessary and sufficient condition for the finiteness property, ie,
the “bound” in the example we did last week.
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7.2 Part III: Markets with Incomplete Information

• This relaxes the 3rd assumption of competitive markets and Walrasian equilibrium.
We begin with “Search Models” in which a consumer is searching for a low price in a
market where different firms charge different prices.

• The simplest setting is one with a large number of firms and the distribution of prices
among the firms is known. (Relaxing this assumption really doesn’t affect the results.)

• We will study two types of models which are subclasses of the general model. 1)
Sequential Search models and 2) Fixed Sample Size Searches.

7.2.1 The Sequential Search Model

• The consumer searches firms one at a time and each search costs c > 0.

• The Derivation. We aim to characterize a rule to follow in searching. Define the
consumer’s reservation price as follows:

R = MinStopping Rules

{
E(PT + cT )

}
.

Here T is the number of time periods it takes to find a match. c is the cost of searching.
PT is the price paid at time T .

• Suppose a consumer has just been offered a price, P , where P = R. If he continues, he
incurrs cost, R (assuming risk neutrality), and if he stops, he pays P . Label P ∗ = R.

• The form of the rule is as follows:

Accept iff P ≤ P ∗ = R.

See handout for a diagram of the search process. Because the search process is recursive
and the game looks the same at each stage, we can conclude:

R = P ∗ = c + E{min(P, R)}.

Hence we have that the reservation price for the consumer is equal to the cost of
searching plus the minimum of the price he would pay if he stops or the reservation
price he “loses” by continuing his search. We include the expectation because the value
of P is unknown when the cost of c is incurred. (See diagram). [G-7.3]

• Plugging in R = P ∗,

P ∗ = c + E{min(P, P ∗)}.

Adding P ∗ outside the expectation and subtracting it from inside,
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P ∗ = c + P ∗ + E{min(P − P ∗, P ∗ − P ∗)} = c + P ∗ + E{min(P − P ∗, 0)}.

c = −E{min(P − P ∗, 0)}.

• Rewriting,

c =

∫ P ∗

Pmin

(P ∗ − P )f(P )dP.

• And this is the relevant search rule. P ∗ is implicitly defined by this equation. See
graph in notes, but the equation is intuitively obvious. [G-7.4] P ∗−P is the 1-period
savings that you make by stopping. So the unit cost of searching, c, on the left, is
equal to the expected value of the savings as P varies from Pmin to P ∗.

7.2.2 Remark (1) on the Search Models

• The first remark involves competition among firms. The reasoning goes that if setting
one price is more profitable than setting another, all firms should make this move
towards the optimal price and we would have a sort of price convergence.

• If we have a set of consumers who follow the sequential search rule and whose unit
search costs are distributed on some interval,

0 < cmin ≤ c ≤ cmax,

then there can be no non-degenerate distribution of prices which form a Nash Equi-
librium. In other words for this distribution of search costs, all pricing distributions
must collapse to a single price.

• To see this, consider any firm that sets price equal to Pmin. We show that this cannot
be an optimal reply. This follows from the fact that if this firm raises its price to any
price in the interval,

Pmin < P < Pmin + Cmin,

then it has the same sales as before but strictly higher profits. To see why this firms
sales remain the same, note that ALL consumers accept its price of Pmin. A consumer
faced with this price, could look elsewhere, but would incurr a cost of at least Cmin.
So as long as the firm doesn’t raise its price by more than that minimum cost to
the consumer, the consumer would prefer to buy from the firm at a price of slightly
less than Pmin + Cmin (which would at least be the price of the next best alternative
product).
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• So in this case, if we draw the demand schedule facing this firm, there is a vertical
portion down around Pmin such that the firm can raise its price by some amount,
maintain the same sales level, and therefore increase profits. [G-7.5] Thus in this
setting, this process will continue until prices all collapse to a single market price.

• Footnote. If cmin = 0, now there is NO vertical segment of the demand schedule
and the above argument does not hold. BUT, if we calculate conditions for a NE in
prices, it turns out that there exists a non-degenerate distribution of prices only if the
distribution of search costs is rather extreme. f(c) must be very high as c → 0. This
is a rather undesirable model of the distribution of search costs.

7.2.3 Remark (2) on the Search Models

• Forms of Search.

• The most popular alternative model is “Fixed Sample Size” search, or FSS. (Stigler).
The idea is to choose the number of firms to search, say n, and pay c ·n to get n quotes.
Then choose the lowest. The optimal strategy is to choose n to minimize,

nc + E[Pmin|n Searches].

• A hint on the class exercise on this model. Given a distribution f(P ), how can we
find the expected value of Pmin? Suppose f(P ) ∼ U [0, 1] as in the exercise. Therefore
f(P ) = 1 and F (P ) = P . The probability that any one price is below P is F (P ) = P .
Thus,

The Probability that any price is above P = 1− P.

The Probability that all n prices are above P = (1− P )n.

The Probability that the minimum price is above P = (1− P )n.

The Probability that the minimum price is below P = 1− (1− P )n.

• If there is no disadvantage of searching sequentially, it is better to do so, but if there
are economies of scale in gathering quotes, then it is better to proceed by choosing n
quotes for period 1, then examining Pmin, and accepting or rejecting. If you continue,
choose another n quotes in period 2 and so on ...

• The Sequential Search is the limiting case where the cost of doing n searches is equal
to c · n, or there are NO economies of scale in search.

• The FSS is a limiting case where there are strong economies of scale in search. Here
the optimal value of n is such that the probability of getting a Pmin which is accepted
is high. Thus you are likely to stop after the first period.

• Footnote. One way of getting a model of market equilbrium with a dispersion of prices
is to use FSS search.
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• Next week we will look at a model by Salop and Stiglitz. Here a consumer is offered
the opportunity to observe all prices for a fixed fee, c. The idea is that c is distributed
on some interval. Consumers who have a low value of c will sample all prices and pay
Pmin. Consumers with a high value of c will choose a firm at random. Therefore we
have in this case, an outcome with a 2-price equilibrium. Either set the “high price”
or set price equal to Pmin. In equilibrium, both strategies will be equally profitable.
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8 Week 8: 4 Mar - 8 Mar

8.1 Salop Stiglitz Model of Search

• The idea: a consumer can buy a FULL set of quotes for a fixed cost, c. It follows
that there will be 2 kinds of consumers: those with full information and those with no
information.

• With this in mind, instead of starting with a continuous distribution of c, we will look
at a simplified model where there are 2 groups of consumers, one with c = 0 (those
that can afford the package of quotes) and those with a high value of c (those that
must just search at random.)

• The model is as follows: Consider N consumers that each buy one unit of a product.
There are a total of n firms in the market.

• A fraction, θ, are fully informed and thus the fraction 1− θ are uninformed.

• Consumers have a cut off price, p0 above which, they will not buy. (A reservation
price).

• Sales by a firm setting any price, p, such that pmin < p ≤ p0 are as follows:

qm =
1

n
(1− θ)N.

Note that firms that charge a price above the minimum price only get UNINFORMED
consumers because the informed consumer will always buy at the minimum price. Note
we have the fraction 1

n
because these firms also compete for customers with firms that

are charging pmin.

• The firms that are setting a price strictly above pmin will therefore raises their prices
up to p0 because by doing so, they raise profits without any loss in sales.

• Thus an equilibrium will be characterised by two prices, pm and pmin.

• Sales by a firm setting pmin are as follows:

qc =
1

n
(1− θ)N︸ ︷︷ ︸

Sales to Uninformed

+
1

K
θN︸ ︷︷ ︸

Sales to Informed

.

Where K is the number of firms offering a price of pmin.

• Conditions for an Equilibrium.
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– 1) A firm setting pmin must be on its marginal cost schedule, since otherwise,
it can raises sales by an arbitrarily small price cut which will capture the entire
market. Thus these firms compete as in a perfectly competitive market and hence
the notation (qc, pc) to represent their sales and price will be used from now on.
Thus,

MC(qc) = pc.

– 2) Equiprofit Condition: If either group was more profitable, one or more firms
would switch groups. Thus, the notation for the quantity and price of the higher
priced firm: qm and pm for the monopoly quantity and prices. Thus,

πm = pmqm − TC(qm) = πc = MC(qc) · qc − TC(qc).

• See graph in notes for a pictures of the marginal cost function and the isoprofit curve.
[G-8.1] We start at the price and quantity of the firms setting a price above pmin equal
to pm. Thus the combination (qm, pm) describes the one type of firm. Then to draw the
isoprofit curve, it must slope downwards above the MC curve to maintain the same
level of profits. Once it crosses the MC curve, the isoprofit curve slopes upwards.

• The first condition above says that (qc, pc) must be on the MC schedule and the second
condition says that (qc, pc) must be on the isoprofit curve. Thus the intersection of the
two determines the price and quantity of the low price firms.

• We can then consider the sales equation for the low priced firms:

qc =
1

n
(1− θ)N︸ ︷︷ ︸
Constant

+
1

K
θN︸ ︷︷ ︸

Depends −vely on K

.

Thus as shown in the graph, we can take the quantity, qc found above and plug it into
this equation to solve for K, or the equilibrium number of low price firms.

• Thus, an equilibrium is characterised by 5 numbers: (qm, pm), (qc, pc), K.

8.2 Akerlof Model: The Market for Lemons

• The market involves imperfect information in regards to quality.

• The question is: Do bad products drive out good products?

• A general remark: Let a fraction, q, of NEW cars sold at average price, p, be lemons.

• Consider the market for 1-month old cars (these cars are old enough for the owner to
know the quality of the car.)

• Since the average price of a new car is p, the value of a good car, vg, must be greater
than p. Similarly, the value of a bad car, vb, must be less than p.

43



• Hence the expected value of a new car is:

E[v] = qvb + (1− q)vg.

• So now what price can trade take place? Well, the price of an old car must be the
same no matter what the quality:

pg = pb = pold.

• If pold ≥ p, the price of a new car, then owners of lemons will swap for new cars. Thus
we assume pold < p.

• Hence,

pold < p ≤ qvb + (1− q)vg = E[v].

Since vg is greater than E[v] and E[v] ≥ p > pold, this implies,

vg > pold.

• So the value of a good car to its owner is greater than the price he could obtain by
selling it. Thus no good cars come to market. The owners of good cars are said to be
“Locked In.”

• Consider the following example of “Market Breakdown.” Let x be a quality index. Let
two groups of traders have utility function, income, and ownership as follows:

U1 = M +
N∑

i=1

xi, Income = Y1, Own N Cars.

U2 = M +
N∑

i=1

3

2
xi, Income = Y2, Own 0 Cars.

So the type 1 traders can be thought of as the Dealers and the type 2 traders are the
consumers. M is the hicksian composite commodity.

• Under full information, dealers sell cars to consumers because 3
2

> 1.

• Let p be the price and µ be the average quality of traded cars.

• Consider type 1 traders: the Dealers. They only have information about the quality
of their own cars so they will buy a car at price p so long as its expected quality,
E(x) = µ > p. Thus their demand schedule is as follows:
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D1 =


Y1

p
if

p

µ
≤ 1.

0 otherwise.
(6)

• Similarly the demand by type 2 traders, the consumers, is as follows:

D2 =


Y2

p
if

p

µ
≤ 3

2
.

0 otherwise.
(7)

• Adding the demand schedules together yields:

D(p, µ) =



Y1 + Y2

p
if

p

µ
≤ 1.

Y2

p
if 1 <

p

µ
≤ 3

2
.

0 if
p

µ
>

3

2
.

(8)

• Supply. The only source of supply is from the type 1 traders. Let the quality, x be
distributed uniformly on the interval [0, 2]. So if all cars come to market,

Average Quality = E[x] =

∫ 2

0

x
1

2
dx = 1.

• Note a type 1 trader will sell a car of quality x at any price p ≥ x. So for any price,
p, the cars supplied are those with x ≤ p. [G-8.2] Thus given that x ∼ U [0, 2] and

f(x) =
1

2
, the fraction of cars supplied at any price p is

p

2
. Thus given there are N

cars in the market, the total supply of cars is:

S1 =
p

2
N.

• Since the cars supplied to market have quality ranging from 0 up to p, and the distri-
bution is uniform, the average quality of those cars that come to market is p

2
. Thus,

µ =
p

2
.

Or,

p

µ
= 2.
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See graph in notes which show the demand function and the supply function that we
just derived. [G-8.3] Clearly since the price of cars brought to market is a constant
p

µ
= 2, and the willingness to pay (even for the first unit) is only equal to

p

µ
=

3

2
, we

have “market breakdown”.

8.3 Spence Model: Market Signalling

• Here we have two groups of possible employees that a firm is considering hiring. Group
I has marginal product equal to 1, they are a proportion of the population equal to
q1 and their cost of attaining education level y is equal to y. Group II has marginal
product equal to 2, they are a proportion of the population equal to q2 and their cost

of attaining education level y is equal to
1

2
y.

• The signal to the employer is investment in education. Notice that the more productive
of the two groups can make this investment more efficiently.

• We seek a “Signalling Equilibrium.” We will look for critical level of education, y∗,
such that workers are paid their HIGH level of marginal product (2) if their educational
level is above y∗ and workers are paid their lower level of marginal product (1) if their
education is below y∗. In equilibrium, workers will sort themselves by their choice of
y. So at equilibrium (called a seperating equilibrium), workers are correctly identified.

• See graph in notes which shows that the lower productivity group will maximize their
cost of education over their expected returns and thus gain zero education. [G-8.4]
Similarly, the high productivity group will obtain education exactly equal to y∗. Thus
the educational cutoff level, y∗, successfully seperates the two groups and provides the
employer with this valuable information.

• Notes.

– 1) Individually this is rational, but it is NOT socially optimal.

– 2) Beliefs of the employer (his choice of y∗) conditions the outcome. So if y∗ is
set incorrectly, the signalling breaks down.

– 3) Group I (the unproductive type), are worse off then under no-signalling (ns)
where everyone receives the same wage:

wns = q1(1) + (1− q1)(2) = 2− q1 = Average Marginal Product.

– 4) Group II may be worse off depending on the parameter values in the model.
Under signalling (s), group II gets:

ws = 2− C(y∗).

Under no-signalling (ns):
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wns = 2− q1.

Thus, wns > ws if:

2− q1 > 2− C(y∗).

q1 < C(y∗).

For example if q1 =
1

2
and y∗ > 1. Thus C(y∗) >

1

2
. Thus C(y∗) > q1 which

means group II would prefer no-signalling.

8.4 Part IV of Lent Term:
General Equilibrium, Trade and Welfare

• See handout for derivations. We have a 2-sector model, Manufactures and Food (m
and f), and 2 factors of production, Labor (L) and Land (T ).

• Assume the production function exhibits constant returns to scale. This along with
perfect competition ensures that factor payments exhaust revenue.

• Prices will be driven down to their unit cost of production.

• The Analysis proceeds in two steps. 1.) We look at at small open economy facing fixed
world prices for goods. Here both factor endowments, L and T , and prices Pm, and Pf

are taken as parameters. 2.) Solve.

• More next week.
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9 Week 9: 11 Mar - 15 Mar

9.1 More on the General Equilibrium Model

9.1.1 The Basic Trade Theorems

• The only relavent thing to add beyond what is on the sheet: We assume that the
manufacturing sector is relatively LABOR intensive. This will set up the upcoming
theorems.

• The Three Basic Trade Theorems.

• The Factor Price Equilization.

– Factor prices determine commodity prices. ie, if we change factor endowments,
holding world commodity prices constant, this does not affect domestic factor
prices.

– We should not take this theorem too seriously because it depends heavily on two
assumptions: 1.) Production functions are the same everywhere and 2.) We have
an internal solution (normally we see corner solutions in reality as countries often
produce 0 units of one good and trade something else they are good at making to
get units of the good that they do not make.

– Thus, this theorem will only apply to countries that are relatively similar in terms
of factor endowments and technology.

• The Rybczynski Theorem. [G-9.1]

– Let the endowment of one factor (say labor, L) rise. Thus L∗ > 0 and T ∗ = 0.
Holding pm and pf constant, or

p∗m = p∗f = w∗ = r∗ = 0.

Thus M∗ > L∗ and F ∗ < 0.

– Thus, in words, if one factor endowment (say labor, L) rises, then the output of
the labor intensive commodity rises and the output of the other commodity falls.

– More generally, For any L∗ and T ∗ such that L∗ > T ∗, then,

M∗ > L∗ > T ∗ > F ∗.

• The Stolper - Samuelson Theorem.

– Keep factors, Labor and Land (L and T ) fixed but raise pm say by a tariff on
manufacturers. Let pf remain fixed. The theorem says this raises the return,
w, to labor, that is, the factor used intensively in manufacturers and lowers the
return to capital, r. Thus, w∗ > p∗m and r∗ < 0.
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– More generally, if p∗m > p∗f , then,

w∗ > p∗m > p∗f > r∗.

– The key assumption underlying this theorem is that is only applies in the long
run. Factors must be able to be moved from one industry to another which usually
takes a long time.

– In the short run, Mcgee observed that when a labor intensive industry looks for
tariff protection, this demand is normally supported by both labor and manage-
ment in that industry. This goes against the theorem, but again, is only true in
the short run so the theorem does not apply.

• See graph in notes [G-9.1] for a graphical interpretation of the Rybczynski theorem.
We see that when labor is expanded and we have assumed homothetic production iso-
quants, the output of the land intensive commodity falls while the output of the labor
intensive commodity rises.

• Under the “Closing the model” section of the handout, there are only a few equations
that are actually important. Equation (b):

w∗ − r∗ =
1

|θ|
(p∗m − p∗f ).

Equation S, (Supply):

M∗ − F ∗ =
1

|λ|
(L∗ − T ∗) + σS(p∗m − p∗f ).

This equation summarizes the supply side. We also have the equation D, (Demand):

M∗ − F ∗ = −σD(p∗m − p∗f ).

• Combining Equation S and Equation D:

p∗m − p∗f = − 1

|λ|(σS + σD)
(L∗ − T ∗).

M∗ − F ∗ =
σD

|λ|(σS + σD)
(L∗ − T ∗).

This specifies the effect of a change in endowments on output and prices.

• The point to note is: The impact on commodity outputs is less if either 1) σS is larger,
or 2) σD is smaller. Note in the M∗ − F ∗ equation, we have the term:

σD

(σS + σD)
=

1

1 + (σS/σD)
.
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So if σD is larger, or the elasticity of substitution between commodities on the demand
side is larger, M∗ − F ∗ is larger which means the impact on commodity outputs is
greater.
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10 Week 10: 18 Mar - 22 Mar

10.1 General Equilibrium - Taxes and Subsidies

• We would like to study the incidence of taxes and subsidies. Who bears the burden of
each? Since a tax and a subsidy have a symmetric, though opposite, influence, we’ll
only study an example of a subsidy.

• See handout for details. But we see that through the introduction of a subsidy, we
can derive equations for the effects on commodity prices, factor prices, and finally,
commodity prices.

• Consider an example. Suppose we impose a 10 percent subsidy on the producers of
good M (which is labor intensive).

• The result is an increase in the return to the factor used intensively in M (labor).

• The price of M falls.

• The relative effects of each of these depends on the elasticity of substitution on the
demand and supply sides.

• We show that if σD −→ 0 (goods complementary), the subsidy is entirely passed on
to the consumer in form a price fall and the factor prices and commodity endowments
do not change. If σD −→ ∞ (substitutable goods), the price change is zero, but the
return on labor increases by a proportion of the subsidy.

• We have similar results when looking at σS. See handout.

10.2 Trade Theory

• Motivation: Consider the notion of inter-industry trade versus intra-industry trade.
Inter-industry trade occurs between two countries which trade the goods they produce
most efficiently for goods that they are less efficient in production. Intra-Industry trade
consists of two countries trading goods in the same industry but which are slightly
differentiated.

• The typical model is the hotelling circular road model where two countries come to-
gether and the firms are now placed equally around a circle of twice the size (as was
done in a problem set).

• The key idea is that we combine two assumptions: 1) Products are differentiated and
2) Products are produced under increasing returns to scale (or falling average cost
curves). Note that with CRS, or a cost schedule of the form:

C(X) = βX,

where MC = β and fixed costs = 0, then free entry would induce an infinite number
of firms around the circle.

51



• Thus we need to introduce a setup cost, α, to avoid this problem. Assume a cost
function of the form:

C(X) = α + βX.

Where α is a fixed setup cost and β is the marginal cost of production.

• In order to motivate the next idea, we will first return to the problem we developed in
the problem set:

– We joined two economies under the circular road hotelling model and found that

prices fell from MC +
t

4
to MC +

t

8
.

– In the long run, note that with 2N = 8 firms present, profits are lower so if profits
were just sufficient to cover fixed outlays or setup costs ex-ante, now profits will
be too low to cover fixed costs.

– We distinguish two cases: 1) This fixed outlay, α, is fixed but NOT SUNK. Then
we get immediate exit. Or 2), α is a SUNK cost. Then this adjustment takes
longer as when plant equipment needs replacement, it will no longer pay to replace
it, so we’ll get a reduction in the number of plants over time.

– How many plants will we have in the long run? Well, we could figure it out
precisely using a zero profit condition but we can say for sure that if there were
N firms before and a potential of 2N firms afterwards, then the number of long
run firms, n, must be:

N < n < 2N.

This can be seen by showing that having either N or 2N firms is not an equilib-
rium. If there are N firms in the market after the merger, then prices must rise
again to their old level, but sales per firm has doubled. Thus this induces higher
profits and entry. If there are 2N firms in the market after the merger, this means
that price is lower but sales per firm are the same (as the number of consumers
has also doubled). Thus this induces lower profits and exit.

• So given this example, we get the next idea: the impact of trade involves two channels.
First prices are lower and second, the number of varieties available to a consumer is
strictly higher. So the focus of our interest in the next model will be on the relative
sizes of these two effects. We will show that the relative size depends on two factors:

– 1) The degree of increasing returns, as measured by α.

– 2) The intensity of consumer tastes, as measured by t.
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10.2.1 The Krugman Model

• In this model we try to represent consumer preferences using an alternative model of
horizontal product differentiation.

• The idea is that all consumer have the same utility function characterised by a taste
for variety:

U =
∑

i

v(ci).

With v′ > 0 and v′′ < 0 as usual. ci denotes the consumption of variety i.

• We immediately introduce a technical assumption:

ε(ci) =
−v′

v′′ci

is decreasing.

Note that we will show that ε represents the elasticity of demand facing a firm which
would always be decreasing for a linear demand but we have the assumption that it is
always decreasing for any demand schedule.

• We set up a simple general equilibrium model as follows.

• Production. Suppose there is only ONE factor of production, labor, call it L. Thus
the amount of labor, li used to produce output, Xi, of good i is:

li = α + βXi.

• Total production of good i is denoted Xi. The number of individuals in the population
is L. In a symmetric equilibrium, the consumption of each good, ci, is the same and:

Xi = Lci.

Where ci is the per capita consumption now since c1 = c2 = c3 = . . . .

• Full Employment. We can write labor supply equals labor demand as follows:

L︸︷︷︸
Labor Supply

=
∑

i

li︸ ︷︷ ︸
Labor Demand

=
∑

i

(α + βXi).

• WE SEEK a symmetric NE with Pi = P as the price of good i and Xi = X for all i.

• We proceed in 3 steps.

• Step I: Determining Demand.
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– Analyze the demand schedule facing the firm. The individual chooses ci to max-
imize his utility. Even without the actual form of the utility function, we know
that the FOC implies:

MU1

P1

=
MU2

P2

=
MU3

P3

= . . . .

So, written another way:

v′(ci) = λpi ∀ i.

Where λ is the lagrange multiplier.

– Since Xi = Lci, substituting in,

v′(Xi/L) = λpi.

Or,
pi = λ−1v′(Xi/L).

And this is our demand schedule (DD).

– Now as an aside, as can show that ε(ci) defined earlier is the elasticity of demand.
Given the demand schedule written above, we have:

dpi

dXi

= λ−1v′′(Xi/L)
1

L
.

Thus, the elasticity of demand is:

− Pi

Xi

dXi

dPi

=
−λ−1v′

Xi

1

λ−1v′′
1

L

= − v′

v′′
Xi

L

= − v′

v′′ci

= ε(ci).

• Step II: Determining Price.

– We focus immediately on the case with a large number of firms. Here the change
in a single price has a negligable effect on λ. So we approximate by treating λ as
constant. Thus,

πi = PiXi − (α + βXi)w.

Where w is the wage rate.

– Thus, noting that Xi = Xi(Pi):

dπ

dPi

=⇒ Xi + Pi
dXi

dPi

− βw
dXi

dPi

= 0.

Multiply through by
dPi

dXi

,
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Xi
dPi

dXi

+ Pi − βw = 0.

Dividing through by Pi,

Xi

Pi

dPi

dXi

+ 1− βw

Pi

= 0.

Or,

−1

ε
+ 1 =

βw

Pi

.

ε− 1

ε
=

βw

Pi

.

Thus,

Pi =
ε

ε− 1
βw.

Or,
Pi

w
=

ε

ε− 1
β.

So this is our “Pricing Rule.”

• Step III: Free Entry Condition.

– We now fix the number of firms (or varieties) by appealing to free entry with a
large number of firms and symmetry, this reduces to a zero profit condition such
that:

πi = PiXi − (α + βXi)w = 0.

Or,

PiXi = (α + βXi)w.

Pi

w
=

(α + βXi)

Xi

.

Pi

w
=

α

Xi

+ β.

Since Xi = Lci,

Pi

w
=

α

Lci

+ β.

And this is our “Free Entry Condition.”
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• See graph in notes which shows the Pricing Rule and the Free Entry Condition. [G-

10.1] This characterises
P

w
and c. To find a number of firms (or varieties), n, we

know:

L = (α + βX)n.

So,

n =
L

(α + βX)
.

• To analyse the trade, we join two identical economies. [G-10.2] This is equivalent to
doubling L. See graph in notes which shows shift of free entry condition and the result
is a lower equilibrium price and a lower level of consumption.

• The first effect:
P

w
falls. The interpretation is best seen looking at a “Chamberlinian”

equilibrium where the demand schedule is just tangent to the average cost schedule
and the firm produces exactly at this tangency were profits are zero. [G-10.3] The
rise in L raises X, the output per firm, thus average cost falls supporting a price fall.

• The second effect: c falls. Since:

P

w
= β +

α

Lc
= β +

α

X
.

It follows that output per firm, X =
α

(P/w)− β
rises.

• Finally the number of firms (or varieties),

n =
L

α + βX
=

L

α + βLc
,

rises since c falls.
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